Antiallodynic effect of intrathecal neostigmine is mediated by spinal nitric oxide in a rat model of diabetic neuropathic pain.
نویسندگان
چکیده
BACKGROUND Intrathecal administration of acetylcholinesterase inhibitors produces antinociception in both animals and humans, but their effect on diabetic neuropathic pain has not been studied. In the current study, we determined the antiallodynic effect of intrathecal injection of an acetylcholinesterase inhibitor, neostigmine, in a rat model of diabetic neuropathic pain. In addition, since acetylcholine can increase release of nitric oxide in the spinal cord, we studied the role of spinal endogenous nitric oxide in the action of intrathecal neostigmine in diabetic neuropathic pain. METHODS Rats were rendered diabetic with an intraperitoneal 50-mg/kg injection of streptozotocin. Intrathecal catheters were inserted, with tips in the lumbar intrathecal space. Mechanical allodynia was determined by application of von Frey filaments to the hind paw. We first determined the dose-dependent effect of intrathecal neostigmine on allodynia. The role of spinal nitric oxide in the action of intrathecal neostigmine was then examined through intrathecal treatments with a neuronal nitric oxide synthase inhibitor (TRIM), a nitric oxide scavenger (PTIO), L-arginine, or D-arginine. RESULTS The diabetic rats developed a sustained tactile allodynia within 4 weeks after streptozotocin injection. Intrathecal injection of 0.1-0.5 microg neostigmine dose-dependently increased the withdrawal threshold in response to application of von Frey filaments. Intrathecal pretreatment with 30 microg TRIM or 30 microg PTIO abolished the antiallodynic effect of intrathecal neostigmine. Furthermore, the inhibitory effect of TRIM on the action of intrathecal neostigmine was reversed by intrathecal injection of 100 microg L-arginine but not D-arginine. CONCLUSIONS Intrathecal neostigmine produces a profound analgesic effect in a rat model of diabetic neuropathic pain. Spinal endogenous nitric oxide contributes to the analgesic action of intrathecal neostigmine in this rat model of diabetic neuropathic pain.
منابع مشابه
The effect of chronic caffeine administration on hyperalgesia in a rat neuropathic pain model: role of nitric oxide pathway
Background: Neuropathic pain is a chronic pain caused by damage to the central nervous system and the peripheral. Caffeine is a non-selective antagonist of A1, A2a, receptors of adenosine, which has a protective effect on neuropathic pain in some doses by inhibiting A2a, A2b receptors. Considering that the nitric oxide (NO) levels are apparently effective in the parts of caffeine central effect...
متن کاملLong-term administration of fluvoxamine attenuates neuropathic pain and involvement of spinal serotonin receptors in diabetic model rats.
Diabetic neuropathic pain management is difficult even with non-steroidal anti-inflammatory drugs and narcotic analgesics such as morphine. Fluvoxamine, a class of selective serotonin reuptake inhibitors (SSRIs), is widely used to treat depression. Its analgesic effects are also documented for diabetic neuropathic pain, but they are limited because it is administered as a single-dose. In this s...
متن کاملRole of Spinal Nitric Oxide in the Inhibitory Effect of [D-Pen, D-Pen]-Enkephalin on Ascending Dorsal Horn Neurons in Normal and Diabetic Rats
Intrathecal [D-Pen,D-Pen]-enkephalin (DPDPE; a -opioid agonist) has a profound antinociceptive effect in neuropathic pain. Spinal nitric oxide (NO) has been implicated in the analgesic effect of several G protein-coupled receptor agonists. Little, however, is known about the role of spinal NO in the inhibitory effect of DPDPE on spinal dorsal horn neurons. In the present study, we determined th...
متن کاملUp-regulation of spinal muscarinic receptors and increased antinociceptive effect of intrathecal muscarine in diabetic rats.
Spinally administered muscarinic receptor agonists or acetylcholinesterase inhibitors produce effective pain relief. Intrathecal injection of a small dose of neostigmine produces a profound antiallodynic effect in rats with diabetic neuropathy. However, the mechanisms of increased antinociceptive effect of cholinergic agents on diabetic neuropathic pain are not clear. In the present study, we t...
متن کاملAntidepressants inhibit P2X4 receptor function: a possible involvement in neuropathic pain relief
BACKGROUND Neuropathic pain is characterized by pain hypersensitivity to innocuous stimuli (tactile allodynia) that is nearly always resistant to known treatments such as non-steroidal anti-inflammatory drugs or even opioids. It has been reported that some antidepressants are effective for treating neuropathic pain. However, the underlying molecular mechanisms are not well understood. We have r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anesthesiology
دوره 95 4 شماره
صفحات -
تاریخ انتشار 2001